52 resultados para onboard sensors

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new charge neutral 4-amino-1,8-naphthalimide based anion sensors 2 and 3 bind to both acetate and dihydrogenphosphate with 1:1 stoichiometry through hydrogen bonding to both thiourea N–H atoms and in the case of dihydrogenphosphate, the naphthalimide 4 amino N–H group as well. This was clearly established from 1H NMR titration experiments with H2PO4- in DMSO-d6 where a substantial shift in the resonance for the naphthalimide N–H was observed concomitant with the expected migration of the thiourea N–H chemical shifts. The binding constants determined from the titration studies indicate that the new sensors bind H2PO4- more strongly than AcO. Fluorescence titrations with sensor 3 indicate quenching of 59% and 36% upon addition of acetate and dihydrogenphosphate, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a location based power control strategy for disconnected sensory nodes deployed for long term service. Power conservation is of importance particularly when sensors communicate with a mobile robot used for data collection. The proposed algorithm uses estimations from a Robust Extended Kalman Filter (REKF) with RSSI measurements, in implementing a sigmoid function based power control algorithm which essentially approaches a desired power emission trajectory based on carrier-to-interference ratios(CIR) to ensure interferenceless reception. The more realistic modelling we use incorporates physical dynamics between the mobile robot and the sensors together with the wireless propagation parameters between the transmitter and receiver to formulate a sophisticated and effective power control strategy for the exclusive usage of energy critical disconnected nodes in a sensory network increasing their life span.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks are emerging as the new frontier in sensing technology, however there are still issues that need to be addressed. Two such issues are data collection and energy conservation. We consider a mobile robot, or a mobile agent, traveling the network collecting information from the sensors themselves before their onboard memory storage buffers are full. A novel algorithm is presented that is an adaptation of a local search algorithm for a special case of the Asymmetric Traveling Salesman Problem with Time-windows (ATSPTW) for solving the dynamic scheduling problem of what nodes are to be visited so that the information collected is not lost. Our algorithms are given and compared to other work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This mini review highlights the synthesis and photophysical evaluation of anion sensors, for nonaqueous solutions, that have been developed in our laboratories over the last few years. We have focused our research mainly on developing fluorescent photoinduced electron transfer (PET) sensors based on the fluorophore-spacer-anion receptor principle using several anthracene (emitting in the blue) and 1,8-naphthalimide (emitting in the green) fluorophores, with the aim of targeting biologically and industrially relevant anions such as acetates, phosphate and amino acids, as well as halides such as fluoride. The receptors and the fluorophore are separated by a short methyl or ethyl spacer, where the charge neutral anion receptors are either aliphatic or aromatic urea (or thiourea) moieties. For these, the anion recognition is through hydrogen bonding, yielding anion:receptor complexes. Such bonding gives rise to enhanced reduction potential in the receptor moieties which causes enhancement in the rate of PET quenching of the fluorophore excited state from the anion:receptor moiety. This design can be further elaborated on by incorporating either two fluorophores, or urea/thiourea receptors into the sensor structures, using anthracene as a fluorophore. For the latter design, the sensors were designed to achieve sensing of bis-anions, such as di-carboxylates or pyrophosphate, where the anion bridged the anthracene moiety. In the case of the naphthalimide based mono-receptor based PET sensors, it was discovered that in DMSO the sensors were also susceptible to deprotonation by anions such as F− at high concentrations. This led to substantial changes in the absorption spectra of these sensors, where the solution changed colour from yellow/green to deep blue, which was clearly visible to the naked eye. Hence, some of the examples presented can act as dual fluorescent-colorimetric sensors for anions. Further investigations into this phenomenon led to the development of simple colorimetric sensors for fluorides, which upon exposure to air, were shown to fix carbon dioxide as bicarbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review article focuses primarily on the work carried in our laboratories over the last few years using luminescent and colorimetric sensors, where the anion recognition occurs through hydrogen bonding in organic or aqueous solvents. This review begins with the story of the discovery of fluorescent photoinduced electron transfer (PET) sensors for anions using charged neutral urea or thiourea receptors where both fluorescent and NMR spectroscopic methods monitored anion recognition. This work led to the development of dual luminescent and colorimetric anion sensors based on the use of the ICT based naphthalimide chromophore, where ions such as fluoride gave rise to changes in both the fluorescence and the absorption spectra of the sensors, but at different concentrations. Here, the former changes were due to hydrogen bonding interactions, whereas the latter was due to the deprotonation of acidic protons, giving rise to the formation of the bifluoride anion (HF2−). Modification of the 4-amino-l,8-naphthalimide moiety has facilitated the formation of colorimetric anion sensors that work both in organic or aqueous solutions. Such charge neutral receptor motifs have also been incorporated into organic scaffolds with norbomyl and calixarene backbones, which have enabled us to produce anion directed self-assembled structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focusing here on the effects of zinc doping in a nanocrystalline matrix of tin dioxide, inverse opal prototype sensors are presented and extensively studied as superior candidates for gas sensing applications. Courtesy of factors including controlled porosity, enhanced surface to volume ratio and homogeneous dispersion of species in the crystalline lattice assured by the sol–gel technique, prototype sensors were prepared with high dopant ratios in a range of new compositions. Exploiting their high sensitivities to low-gas concentrations at low working temperatures, and thanks to the presented templated sol–gel approach, the prepared sensors open up new frontiers in compositional control over the sensing oxide materials, consequently widening the possibilities available in on-demand gas sensor synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique is here presented, based on inverse opal metal oxide structures for the production of high quality macro and meso-porous structures for gas sensing. Taking advantage of a sol-gel templated approach. different mixed semiconducting oxides with high surface area, commonly used in chemical sensing application, were synthesized. In this work we report the
comparison between SnO2 and SnO2:Zn. As witnessed by Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and by Powder x-ray Diffraction (PX RD), highly ordered meso-porous structures were formed with oxide crystalline size never exceeding 20 nm . The filled templates. in form of thick films, were bound to allumina substrate with Pt interdigitated contacts
and Pt heater, through in situ calcination, in order to perform standard electrical characterization. Pollutant gases like CO and NO2 and methanol. as interfering gas, were used for the targeted electrical gas tests. All samples showed low detection limits towards both reducing and oxidizing species in low temperature measurements. Moreover, the addition of high molar percentages of Zn( II) affected the beha viour of electrical response improv ing the se lecti vity of the proposed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4-amino-1,8-naphthalimide based chemosensors 2, 4 and 6 show striking green-to-purple colour changes due to the deprotonation of the 4-amino moiety on interaction with strongly basic anions such as F: these colour changes reverse gradually with time due to the fixation of atmospheric CO2 (as HCO3) yielding 1:1 adducts as demonstrated by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This critical review focuses on the development of anion sensors, being either fluorescent and/or colorimetric, based on the use of the 1,8-naphthalimide structure; a highly versatile building unit that absorbs and emits at long wavelengths. The review commences with a short description of the most commonly used design principles employed in chemosensors, followed by a discussion on the photophysical properties of the 4-amino-1,8-naphthalimide structure which has been most commonly employed in both cation and anion sensing to date. This is followed by a review of the current state of the art in naphthalimide-based anion sensing, where systems using ureas, thioureas and amides as hydrogen-bonding receptors, as well as charged receptors have been used for anion sensing in both organic and aqueous solutions, or within various polymeric networks, such as hydrogels. The review concludes with some current and future perspectives including the use of the naphthalimides for sensing small biomolecules, such as amino acids, as well as probes for incorporation and binding to proteins; and for the recognition/sensing of polyanions such as DNA, and their potential use as novel therapeutic and diagnostic agents (95 references).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of electrodes with the tripeptide Gly–Gly–His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 ± 0.4) 1010 M−1 at 25 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine) may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylinder-planar Ge waveguides are being developed as evanescent-wave sensors for chemical microanalysis. The only non-planar surface is a cylinder section having a 300-mm radius of curvature. This confers a symmetric taper, allowing for direct coupling into and out of the waveguide's 1-mm2 end faces while obtaining multiple reflections at the central <30-μm-thick sensing region. Ray-optic calculations indicate that the propagation angle at the central minimum has a strong nonlinear dependence on both angle and vertical position of the input ray. This results in rather inefficient coupling of input light into the off-axis modes that are most useful for evanescent-wave absorption spectroscopy. Mode-specific performance of the cylinder-planar waveguides has also been investigated experimentally. As compared to a blackbody source, the much greater brightness of synchrotron-generated infrared (IR) radiation allows a similar total energy throughput, but restricted to a smaller fraction of the allowed waveguide modes. However, such angle-selective excitation results in a strong oscillatory interference pattern in the transmission spectra. These spectral oscillations are the principal technical limitation on using synchrotron radiation to measure evanescent-wave absorption spectra with the thin waveguides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetrically tapered planar IR waveguides have been fabricated by starting with a ZnS coated concave piece of single-crystal Ge, embedding it in an epoxide resin as a supporting substrate, and then grinding and polishing a planar surface until the thickness at the taper minimum is <30 μm. Such tapering is expected to enhance a waveguide's sensitivity as an evanescent wave sensor by maximizing the amount of evanescent wave energy present at the thinnest part of the waveguide. As predicted by theory, the surface sensitivity, i.e., the absorbance signal per molecule in contact with the sensing region, increases with decreasing thickness of the tapered region even while the total energy throughput decreases. The signal-to-noise ratio obtained depends very strongly on the quality of the polished surfaces of the waveguides. The surface sensitivity is superior to that obtained with a commercial Ge attenuated total reflection (ATR) accessory for several types of sample, including thin films (<10 ng) and small volumes (<1 μL) of volatile solvents. By using the waveguides, light-induced structural changes in the protein bacteriorhodopsin were observable using samples as small as ∼50 pmol (∼1 μg). In addition, the waveguide sensors can reveal the surface compositions on a single human hair, pointing to their promise as a tool for forensic fiber analysis.